
Appendix II

Derivation of Bloch’s Theorem

The wave function of an electron moving in a periodic potential is a solution of the Schrödinger equation, which is given
by Eq. (8.41). Evaluating the Schrödinger equation at the coordinate point r + l, we obtain(
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ψ(r + l) = Eψ(r + l). (II.1)

We may use Eq. (8.42) to replace the potential energy term in this equation with its value at the point r giving(
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ψ(r + l) = Eψ(r + l). (II.2)

The functions ψ(r) and ψ(r + l) are thus both solutions of the Schrödinger equation corresponding to the energy E. If the
energy eigenvalue E is non-degenerate, the function ψ(r + l), which is obtained from ψ(r) by a displacement by a lattice
vector l, must be proportional to ψ(r). This is true for any l. We consider first the function ψ(r + a1) which corresponds to
a single step in the direction a1. For this function, the appropriate relation of proportionality can be written

ψ(r + a1) = λ1ψ(r). (II.3)

Since the functions ψ(r + a1) and ψ(r) are both normalized, we must have

|λ1|2 = 1. (II.4)

We can thus write λ1 in the form

λ1 = eik1 , (II.5)

where k1 is a real number. Equation (II.3) then becomes

ψ(r + a1) = eik1(r). (II.6)

Similar equations can be derived for displacements in the a2 and a3 directions

ψ(r + a2) = eik2(r),ψ(r + a3) = eik3(r). (II.7)

The effect of a general translation can be obtained by applying Eqs. (II.6) and (II.7) successively for translations in the
a1, a2, and a3 directions

ψ(r + 1) = ψ(r + l1a1 + l2a2 + l3a3)

= eik1ψ(r + (l1 − 1)a1 + l2a2 + l3a3)

= eik1l1ψ(r + l2a2 + l3a3)

= ei(k1l1+k2l2+k3l3)ψ(r).

(II.8)

To express this result in more general terms, we define a wave vector k

k = k1
b1
2π

+ k2
b2
2π

+ k3b3
2π

, (II.9)
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where b1, b2, and b3 are the reciprocal vectors corresponding to the unit vectors a1, a2, and a3. Using Eqs. (8.1) and (8.22),
Eq. (II.8) can be written

ψ(r + l) = eik·lψ(r), (II.10)

which is a mathematical expression for the theorem. The proof of the theorem depends upon the potential energy being
periodic.

A more general proof of Block’s theorem including the case for which the energy E is degenerate can be found in the
book by Ziman which is cited at the end of Chapter 8.


