Appendix II

Derivation of Bloch's Theorem

The wave function of an electron moving in a periodic potential is a solution of the Schrödinger equation, which is given by Eq. (8.41). Evaluating the Schrödinger equation at the coordinate point $\mathbf{r} + \mathbf{l}$, we obtain

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r} + \mathbf{l})\right)\psi(\mathbf{r} + \mathbf{l}) = E\psi(\mathbf{r} + \mathbf{l}). \tag{II.1}$$

We may use Eq. (8.42) to replace the potential energy term in this equation with its value at the point \mathbf{r} giving

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi(\mathbf{r} + \mathbf{l}) = E\psi(\mathbf{r} + \mathbf{l}). \tag{II.2}$$

The functions $\psi(\mathbf{r})$ and $\psi(\mathbf{r}+\mathbf{l})$ are thus both solutions of the Schrödinger equation corresponding to the energy E. If the energy eigenvalue E is non-degenerate, the function $\psi(\mathbf{r}+\mathbf{l})$, which is obtained from $\psi(\mathbf{r})$ by a displacement by a lattice vector \mathbf{l} , must be proportional to $\psi(\mathbf{r})$. This is true for any \mathbf{l} . We consider first the function $\psi(\mathbf{r}+\mathbf{a}_1)$ which corresponds to a single step in the direction \mathbf{a}_1 . For this function, the appropriate relation of proportionality can be written

$$\psi(\mathbf{r} + \mathbf{a_1}) = \lambda_1 \psi(\mathbf{r}). \tag{II.3}$$

Since the functions $\psi(\mathbf{r} + \mathbf{a}_1)$ and $\psi(\mathbf{r})$ are both normalized, we must have

$$|\lambda_1|^2 = 1. \tag{II.4}$$

We can thus write λ_1 in the form

$$\lambda_1 = e^{ik_1},\tag{II.5}$$

where k_1 is a real number. Equation (II.3) then becomes

$$\psi(\mathbf{r} + \mathbf{a}_1) = e^{ik_1}(\mathbf{r}). \tag{II.6}$$

Similar equations can be derived for displacements in the \mathbf{a}_2 and \mathbf{a}_3 directions

$$\psi(\mathbf{r} + \mathbf{a}_2) = e^{ik_2}(\mathbf{r}), \psi(\mathbf{r} + \mathbf{a}_3) = e^{ik_3}(\mathbf{r}). \tag{II.7}$$

The effect of a general translation can be obtained by applying Eqs. (II.6) and (II.7) successively for translations in the \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 directions

$$\psi(\mathbf{r}+1) = \psi(\mathbf{r}+l_{1}\mathbf{a}_{1}+l_{2}\mathbf{a}_{2}+l_{3}\mathbf{a}_{3})
= e^{ik_{1}}\psi(\mathbf{r}+(l_{1}-1)\mathbf{a}_{1}+l_{2}\mathbf{a}_{2}+l_{3}\mathbf{a}_{3})
= e^{ik_{1}l_{1}}\psi(\mathbf{r}+l_{2}\mathbf{a}_{2}+l_{3}\mathbf{a}_{3})
= e^{i(k_{1}l_{1}+k_{2}l_{2}+k_{3}l_{3})}\psi(\mathbf{r}).$$
(II.8)

To express this result in more general terms, we define a wave vector **k**

$$\mathbf{k} = k_1 \frac{\mathbf{b}_1}{2\pi} + k_2 \frac{\mathbf{b}_2}{2\pi} + \frac{k_3 \mathbf{b}_3}{2\pi},\tag{II.9}$$

where \mathbf{b}_1 , \mathbf{b}_2 , and \mathbf{b}_3 are the reciprocal vectors corresponding to the unit vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 . Using Eqs. (8.1) and (8.22), Eq. (II.8) can be written

$$\psi(\mathbf{r} + \mathbf{l}) = e^{i\mathbf{k}\cdot\mathbf{l}}\psi(\mathbf{r}),\tag{II.10}$$

which is a mathematical expression for the theorem. The proof of the theorem depends upon the potential energy being periodic.

A more general proof of Block's theorem including the case for which the energy E is degenerate can be found in the book by Ziman which is cited at the end of Chapter 8.